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Executi ve summary

a. Problem Description

Our client is a German drug manufacturer who owns and operates six stores in different parts of
Germany. Each store has a unique layout and some stores are open for fewer days than others. Moreove
customer footfall varies by location. Our client contsastaffing personnel on a daily basis from a
staffing agency for all the stores, and each contracted staff is paid on per hour basis every day. The
management in our <client’s organization has be
costs ly optimizing the number of store staff that is contracted every day. The number of staff required at
each store depends on the number of customers who visit the store. Therefore, as a first step toward
optimizing the number of staff required at each @f $ix stores, our client wanted to estimate customer
footfall at each store.

Our task was to forecast customer footfall on a daily basis at each store locatiofoogeast period of
six weeksstarting August 1, 2015. To accomplish this task, our tjeovided daily sales and customer
footfall information from January 1, 2013 to July 31, 2015.

b. Brief Description of Data

The dataset was obtained from Kaggle.com. For each store, the dataset contained daily sales an
customer footfall. In addition tthese two fields, there was further information provided on whether there
was any sales promotion on any given day and whether a given day was a state holiday or a schoo
holiday.

For the purpose of this analysis, only customer footfall was consideliedvaald directly impact the
staffing requirement at the store. The customer data contained level, noise and seasonality while flat trenc
was observed for all the series. Seasonality was observed to be 7.
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Above plot shows the customer footfa#ifore removing the closed days.
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Day of Week Seasonality
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c. High Level Description of Forecasting Methods
The following methods were used for forecasting

1 Naive (Benchmark Prediciton)

1 Holt-Winters Smoothing- Due to the presence of seasonality

1 Multi Linear Regression (MLR) Due to the presence of seasonality

1 Ensemble-To ewaluate if the combination of model is better than individual models
Evaluation -

The methods and results were evaluated based on Root Mean Square Error (RMSE) and based on th
plots of the actual and forecasted values from various methods.

Thevalidation errors for each of the methods are shown in the table below

Validation Store 1 Store 2 Store 4 Store 7 Store 85 Store 562
Errors

(RMSE)

Naive 166.87 209.59 381.33 276.59 240.60 350.66
Holt Winter 55.65 173.04 147.18 117.92 90.60 169.13
MLR 145.44 174.09 400.83 401.84 246.42 306.93

The actual and forecasted plots for each of the methods used are shown in the plot below:
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d. Conclusions and Recommendations

1 Based on the plots and errors above we concludéHtibat t  Wimethod shouid be used for
forecasting for all stores.

1 We believe that hourly data may help the store better predict the number of customer during peak
hours and this could enable the storenagers to plan staffing appropriately while reducing the
total operational cost of the store.

1 We also recommend that the store managers consider the 95% confidence band for staffing as
that account for majority of the cases rather than the single w@éltiee forecast. This would
ensure that customer service levels are maintained across the stores.




Technical Summary

Data Preparation- The objective of data preparation is to make the available data suitable for

forecasting using different methods. We followed the following steps for data preparation:

a)
b)
c)

d)

Issues with Data Preparation

period as our validation period.

Thursday was dropped while running the regression calculation

Sorting of DataData was in descending order, so sorting was done to get in agrerndin
Time Indexing For regression model, time index has to be created to capture Trend

Created Dummy Variable#t has to be created to capture Seasondlitynmy variable for

DataPartition We used Tableau to plot our data to observe Seasonality, Ttewvesand
Noise. We realized after the plot that we have a seasonality of 7 and our forecast period was

42. Since our forecast period is greater than the seasonality numberetbligsg forecast

Forecasting Methods usedwe used the following four methods flmrecasting:

a) Naive Method Naive method with seasonality 7 was chosen as a benchmark method against

which other methods will be compared/e got RMSE of 166.8By Naivemethod

b) Hol t Wi nt €Thé data Hde sedsanality and among all other methods available only
Holt Winter’ Met hod can handle seasonal.
this mettlod can be interpreted by the following results:

Training Error Measures Validation Error Measures
Mean Absolute Percentage Error (MAPE) | 1106220598 LT TRl 100166
Mean Absolute Deviation (MAD) 78.09891152 mean g\bsoluIeEDevLah:;r;)(MAD) ggg%zgiilé;
L ean square rmor .

Meanl Squére EAES 16581 B Tracking Signal Error (TSE) -2.276971193
Tiacking Signal Error (TSE) 0455215284 Cumulative Forecast Error (CFE) -102.523774p
Cumulative Forecast Error (CFE) -30.5018182 Niean Forecast Error (MFE) 2 44100075
Mean Forecast Error (MFE) -0.03950202
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c) Multi- Regression Methaedrhis method is also used to handle data with trends and
seasonality. Further, it has an added advantage that it can handle missing values. Also, on tof
of that it can be used to identify the key variables affecting the dependent variables. We used

this mehod on our data and results are as shown below:

Validation Data Scoring - Summary Report
Training Data Scoring - Summary Report

Total sum
Total sum of
of squared Average
squared Average errors | RMS Erro  Error
errors | RMS Erronf ~ Error 888363.2 145.4350 61.97586993
13852259 124.0621 9.06337E-13
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d) EnsembleTo capture good qualities of different models, Ensemble is created. We have
taken the average value of the results obtlai

and got our Ensemble outpThe final results is captured in the following chart:

Methods RMSE
Naive 166.87
Holt Winter’s 55.65
Multi- Linear Regression 145.44
Ensemble 63.31
Conclusion and Recommendatienslo | t Wi nt er’ s s mootMBE, s0og i s |gi

this method will be used to forecast future sales at the sfdses.Ensemble method gave a
higher error and its costly to implement Ensemble method so we suggest not to use it.
Further, we could have looked further for attgressive model beyorthis.

The detailed charts and graphs (plots of Actuals and Residuals), obtained from Tableau have
been included in the Exhibits following the rep&xhibit Part - A contains training and
validation data for the t woExhist PdrteRicentainddo | t | Wi
forecast plots for the 6 stores based on Hol
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Exhibit Part - A

Measure Names

Store-2
. Actual
1200 W Predict HW

M Predict MLR
1000

800

600

Customers

400

200

Mar 16 Mar 31 Aprl5 Apr 30 May 15 May 30 Jun 14 Jun 28 Jull4d Jul29
Day of Date [2015] »*

Measure Names

. Residuals HW
M Residuals MLR

Store-2 Residuals

800
600
400

200

Value

-200

-400

-600

-800

.
L

Mar 16 Mar 31 Apr 15 Apr 30 May 15 May 30 Junl4 Jun Jul 14 Jul 29

Day of Date [2015] #




Exhibit Part - A
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Store-7
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Store-85
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Exhibit Part - A
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Exhibit - Part- B
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Store-4 Forecast
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Exhibit - Part- B

Store-85 Forecast
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