FCAS Project Presentation:

Forecasting fuel consumption
At Nation Level – US
for

Group B8	PGID		
Dhruv Goel	61710938		
Naireet Ghosh	61710078		
Diwakar Sanduja	61710727		
Prabhjot	61710710		
Amey Rajput	61710570		
Sri Ram	61710592		

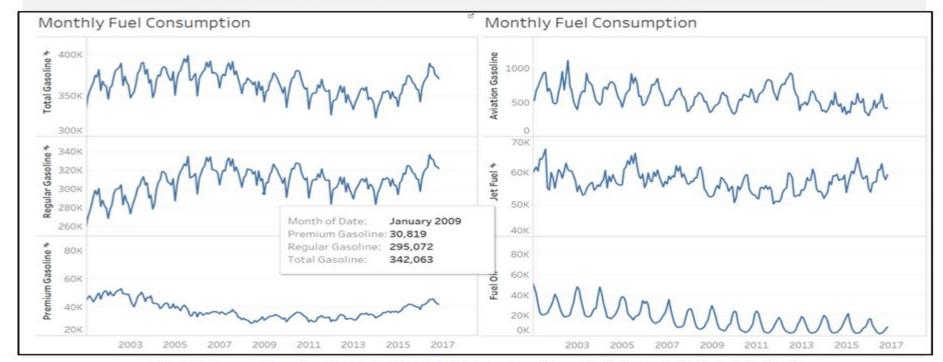
Business Problem

- Problem Description: To design a forecasting model for accurate prediction of variants of refinery products consumption in the US.
- Stakeholder: Valero Energy Corporation, a fortune 500 company involved in manufacturing and marketing of fuel and petrochemical products and power.
- This would help them:
 - Plan operations
 - Foresee cash flows
 - Optimize and manage procurement of inventory

Forecasting Problem

- Objective: To design a forecasting model for accurately predicting consumption of different refinery products in the US for 2016. The intent is to use consumption patterns to optimize on supply side factors / constraints.
- Type of Modelling: Forecasting
- Method: This is a supervised learning problem where we try to train the model based on past data regarding different fuel consumption in the US.
- Success Criteria: Minimize the Mean Absolute Percentage Error (MAPE). Lower the MAPE closer the predicted consumption to the actual consumption

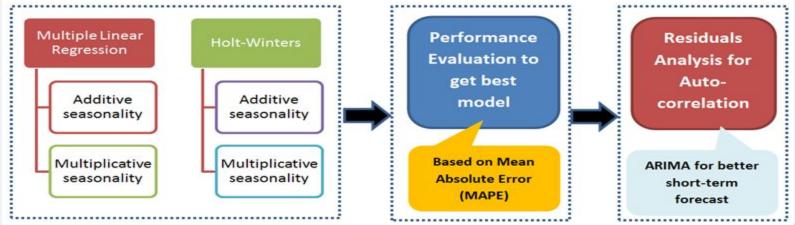
Business

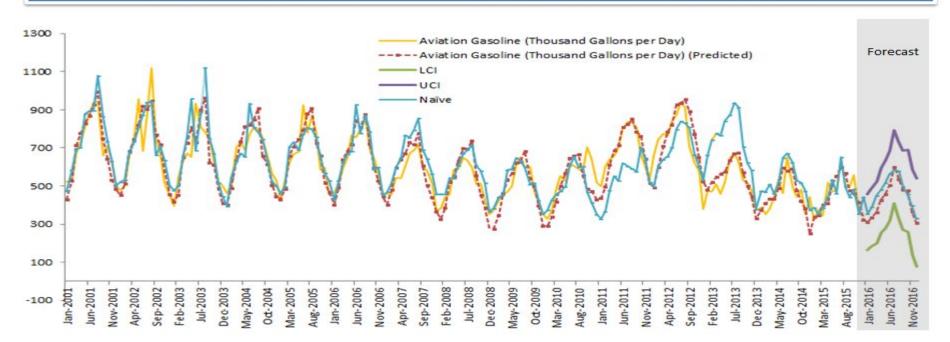

problem

Data Description

- Data Description: The data contains 22 years of historical monthly data on different types of US refinery products including price information.
 - --Source: US Energy Information Administration (Forms EIA-782C, "Monthly Report of Prime supplier sales of Petroleum Products for local consumption"
 - --Key Characteristics: Month Year Level; Available Period: Jan 1983 to Dec 2015
 - --Series to be analyzed (Observation period 2001 to 2015)
 - o Total Gasoline
 - o Regular Gasoline
 - o Premium Gasoline
 - o Aviation Gasoline,
 - o Jet fuel and
 - o Fuel oil

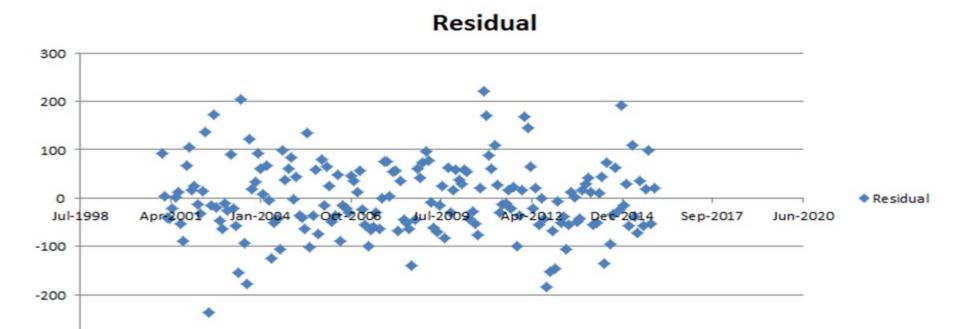
Data Description


DATA Source - https://www.eia.gov/dnav/pet/pet_sum_mkt_dcu_STX_m.htm

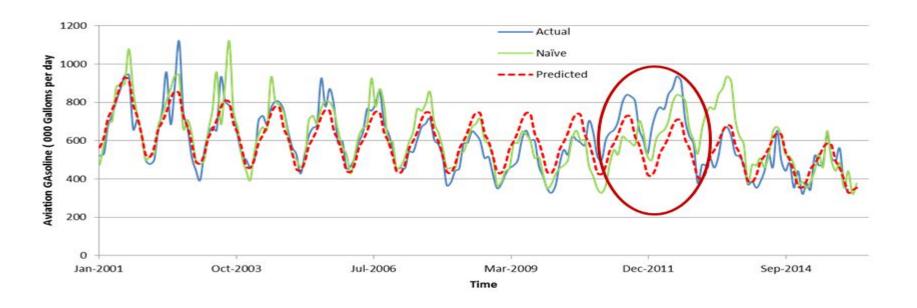

Components observed: Level, Seasonality and Trend (With Noise)

Methods

- External information such as price, CPI and income tested but no correlation observed
- Data Partitioning: validation period 12 months, training period 168 months
- We have considered forecasting methods that consider both trend and seasonality.
- The following predictive models were performed and their performance evaluated to arrive at the final model

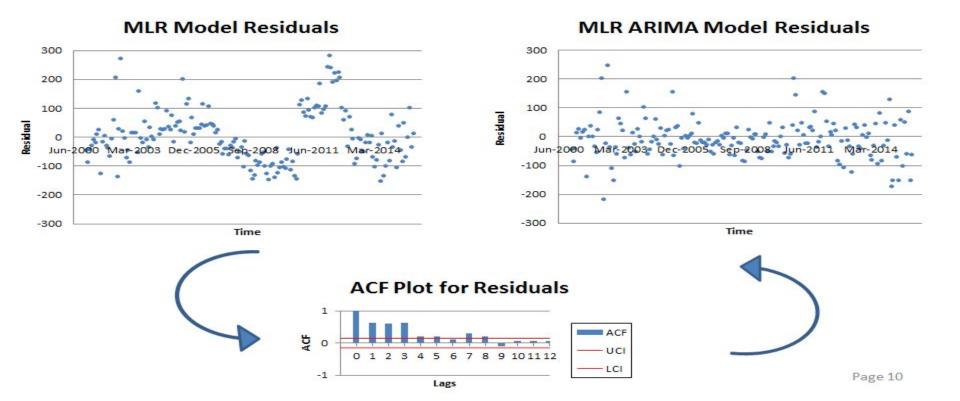

Actual, Predicted and Forecasted Values for Aviation Gasoline – Holt Winter Multiplicative Model

The graph shows Actual Values, Predicted Values, Naïve Prediction and Forecasted values


-300

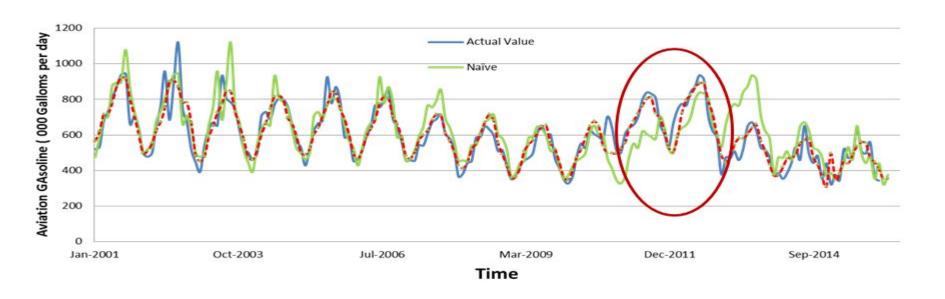
Residual Plot- Holt Winter Multiplicative Model

Plot of residuals from Holts Winter Multiplicative Model with time


Actual, Predicted and Forecasted Values for Aviation Gasoline – MLR model with multiplicative seasonality

The prediction is off in the circled area, We also looked at autocorrelation in the residuals

Residual Plot - MLR and MLR ARIMA model


Data

Data mining

problem

EVALUATIONS

Model Prediction Improves by inclusion AR(3)

Business

problem

EVALUATIONS

- Short Term Horizon: The final model is based on running the ARIMA model over Multiple Logistic Regression (MLR) by removing auto-correlation providing us forecasts for the 1st two months in 2016 with high accuracy.
- Long Term Horizon: The final model is based on running the Holt's winter which provides us with forecasts of 12 months of fuel consumption with a relatively low accuracy or MAPE

In Long Term MAPE is relatively more

MAPE Improved by ARIMA in short term

	39	Acres 1				
	Lo	Long Term			Short Term	
Type of Fuel	MAPE	Method Name		MAPE	Method Name	
Total Gasoline	3.3%	Holt Winter's Model (Forecasts for 12 months)		1.8%	ARIMA Model over MLR	
Premium Gasoline	11.1%			2.2%		
Regular Gasoline	2.6%			1.6%		
Jet Fuel	2.3%			2.3%	(Forecasts for 2 months)	
Avaition Gasoline	11.7%			11.3%		
Fuel Oil	21.9%			19.3%		

RECOMMENDATIONS

- The short term model should be re-run every month for prediction of next month's consumption.
- The long term model should be re-run every 12 months for prediction of next 12 month's consumption.
- External factors such as environmental, political, and economical risks are not accounted in the model
- Price and profitability should be considered in conjunction with the consumption pattern and prediction to plan production accordingly