Predicting PicCollage users’ first purchase for targeted promotions

Team 2
Reggie Escobar . Eduardo Salazar
Uni Ang . Lynn Pan
Cardinal Blue, Inc.

Founded in 2011

100m installs

$2.3m Seed funding (2013)

In-app purchases - backgrounds; stickers & watermark removal
About PicCollage

WATERMARK

STICKER

BACKGROUND
Problem:
Limited user info data hinders user specific targeted promotions

Business Goal:
Target users likely to make a first purchase
Send personalized promotions

Stakeholder:
PicCollage
Data Mining Goal

Ranking the user’s with high probability of making a first purchase when they create their first collage

Supervised. Forward-looking

Categorical: Binary for first purchase (Y/N)
One Month New user (2017/9) data from firebase

- Structure: User info + Events info by session
 - First open
 - First Collage Save
 - First Purchase
 - First open time
 - Continent / Country
 - Device category
 - Login
 - create_collage_empty
 - Create_Collage: Empty / Grid / Remix
 - Remix_category
 - Add Photos: type & avg number
 - Add photo from web
 - Per Collage: Sticker / ...
 - Font type : 10 type
 - Share Collage : type + number
 - Background pick : search / URL / library
 - Doodle per added
 - Sum of Frame try
 - Sum of Clip
 - Avg Collage in Library
 - Num of sticker preview
 - Export collage : sticker / background/

Data Source

Share Collage : type + number
Export collage : sticker / background/
Data Description and Preparation

- **Training data**
 - # record: 10,000
 - % purchase: 28%
 - # record: 9344
 - % purchase: 50%

- **Validation data**
 - # record: 11,405
 - % purchase: 28%

- **Test data**
 - # record: 11,405
 - % purchase: 28%

Filter

- By User
 - Create derived variables from events
 - Filter events before first purchase/first collage save

Missing value

- Country
 - device language

Pico Extractor

This project is a parser to get the predictors.
Methods & Performance Evaluation

- Task: Ranking
- Benchmark: naive (all class “0”)
- Method
 - Naive Bayes (Binned variables)
 - Classification tree (single)
 - Random Forest
 - Boosted Tree
 - Logistic Regression
- Performance measure
 - Lift Chart
 - Decile lift chart
 - Sensitivity
 - Specificity
Method: Random Forest

Test Data scoring - Summary Report

<table>
<thead>
<tr>
<th>Confusion Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Class</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
</tr>
</tbody>
</table>

Performance:

- Success Class: 1
- Precision: 1
- Recall (Sensitivity): 0.020685
- Specificity: 1
- F1-Score: 0.040532

Lift chart (test dataset)

Decile-wise lift chart (test dataset)
Method: Single Tree

oversample / Full Tree / terminal 934
Method: Random Forest oversampling

Test Data scoring - Summary Report

Cutoff probability value for success (UPDATABLE): 0.5

Confusion Matrix

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted Class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1494</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>842</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2501</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3365</td>
</tr>
</tbody>
</table>

Error Report

<table>
<thead>
<tr>
<th>Class</th>
<th># Cases</th>
<th># Errors</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2336</td>
<td>842</td>
<td>36.04452</td>
</tr>
<tr>
<td>0</td>
<td>5866</td>
<td>2501</td>
<td>42.63553</td>
</tr>
<tr>
<td>Overall</td>
<td>8202</td>
<td>3343</td>
<td>40.75835</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success Class</td>
<td>1</td>
</tr>
<tr>
<td>Precision</td>
<td>0.373967</td>
</tr>
<tr>
<td>Recall (Sensitivity)</td>
<td>0.639555</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.573645</td>
</tr>
<tr>
<td>F1-Score</td>
<td>0.471963</td>
</tr>
</tbody>
</table>

Lift chart (test dataset)

Decile-wise lift chart (test dataset)
Method: Boosted Tree

Test Data scoring - Summary Report

<table>
<thead>
<tr>
<th>Confusion Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Class</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success Class</td>
</tr>
<tr>
<td>Precision</td>
</tr>
<tr>
<td>Recall (Sensitivity)</td>
</tr>
<tr>
<td>Specificity</td>
</tr>
<tr>
<td>F1-Score</td>
</tr>
</tbody>
</table>

[Images of lift charts and performance metrics]
Method: Logistic Regression

Variables selection—Stepwise

- Num_events
- Create_collage_empty
- Num_background_try
- Num_frame_try
- Avg_of_image_export
- Avg_photo_facebook
- remix_cat_Back_to_School
- remix_cat_Congrats
- remix_cat_Just_for_Fun
- remix_cat_Labor_Day_Weekend
- font_Roboto_BlackItalic
- Create_collage_grid
- Login

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>0</td>
<td>2745</td>
<td>6359</td>
</tr>
</tbody>
</table>

- Accuracy: 0.6566
- Sensitivity: 0.03650
- Specificity: 0.90921
Boosted Tree and Random Forest are top two best model.
Recommendations

• How to use this model for marketing promotion?
 Offering bundles/discount to users that have a high probability of making a first purchase.

• Model recommendation
 – Due to the unbalanced dataset and ranking goal, we suggest to adopt over-sampling

• Date recommendation
 – The data we are using now is missing the October purchase.
 – Collect events data per user for their 30 days full history.

• Variables recommendation
 – Getting user information might help to predict first purchase earlier.