## Preventing exacerbation in respiratory patients by early prediction of exacerbation



Kun-Lin Tsai ,Yuan-Yu Zhang ,Chris Lo

#### **Business Problem**

- Customers: public health care system (public welfare)
- Purpose: decreasing lethal rate and lowering social costs (preventing exacerbation)
- Goals: Establishing a knowledge based model for predicting exacerbators with:
- a. Standard rules (current: physical examination)
- b. Fast (DNA exam)
- c. Low cost (throat swab)
- d. Less measurements (predictive variables)
- e. High accuracy (better one)



#### Data mining goal

- Purpose: Finding out predictive variables and creating a model for preventing exacerbation
- Goals: selecting useful variables for creating predictive model by:
- a. Dimension Reduction (from many exam)
- b. With comparatively few predictors
- c. With good AUC (correct prediction)



#### Data profile

| sid  | Exacebator | V3 | V4 | V29      | V30 | V31      | V33 | V36      | V37      | V38      | V39      |
|------|------------|----|----|----------|-----|----------|-----|----------|----------|----------|----------|
| 1296 | 0          | 0  | 1  | 0.49505  | 0   | 0.340659 | 0   | 0.47619  | 0.288395 | 0.522788 | 0.241652 |
| 1725 | 0          | 0  | 0  | 0.50495  | 0   | 0.626374 | 0   | 0.428571 | 0.480195 | 0.489276 | 0.439683 |
| 2195 | 0          | 0  | 1  | 0.554455 | 0   | 0.549451 | 0   | 0.404762 | 0.573315 | 0.687668 | 0.411311 |
| 2712 | 0          | 0  | 0  | 0.346535 | 0   | 0.373626 | 0   | 0.333333 | 0.387769 | 0.542895 | 0.324455 |
| 2913 | 0          | 0  | 0  | 0.376238 | 0   | 0.395604 | 0   | 0.345238 | 0.350938 | 0.580429 | 0.274078 |
| 1269 | 0          | 0  | 1  | 0.29703  | 1   | 0.274725 | 1   | 0.470238 | 0.213343 | 0.288204 | 0.269253 |
| 2836 | 0          | 0  | 1  | 0.356436 | 0   | 0.274725 | 0   | 0.386905 | 0.313412 | 0.601877 | 0.232388 |
| 91   | 0          | 0  | 0  | 0.514851 | 0   | 0.461538 | 0   | 0.529762 | 0.323141 | 0.449062 | 0.308242 |
| 5571 | 0          | 0  | 1  | 0.356436 | 0   | 0.21978  | 0   | 0.369048 | 0.309937 | 0.620643 | 0.222158 |
| 2645 | 0          | 0  | 0  | 0.326733 | 1   | 0.21978  | 0   | 0.464286 | 0.295344 | 0.352547 | 0.328315 |
| 4059 | 0          | 0  | 1  | 0.336634 | 1   | 0.406593 | 0   | 0.279762 | 0.364837 | 0.379357 | 0.387956 |
| 1724 | 0          | 0  | 0  | 0.405941 | 0   | 0.230769 | 0   | 0.494048 | 0.496178 | 0.754692 | 0.318278 |
| 5122 | 0          | 0  | 0  | 0.39604  | 1   | 0.175824 | 0   | 0.345238 | 0.314802 | 0.400804 | 0.323876 |
| 5566 | 0          | 0  | 0  | 0.376238 | 0   | 0.461538 | 0   | 0.488095 | 0.52467  | 0.829759 | 0.307663 |
| 3626 | 0          | 0  | 1  | 0.415842 | 1   | 0.296703 | 0   | 0.345238 | 0.246699 | 0.352547 | 0.275429 |
| 5254 | 0          | 0  | 0  | 0.376238 | 1   | 0.373626 | 0   | 0.428571 | 0.259903 | 0.365952 | 0.283343 |

- Resource: a competition from crowdanalytix (MODELING: Predict Exacerbation in patients with Respiratory Diseases)
- Dataset:
- a. 330 columns: medical derived data (numerical)
- b. 1000 columns: genetic data (nominal)
- c. 300 variables after data cleaning
- d. 4000 patients (rows)
- e. 1= excerabator, 0 = non excerabator (supervised)









5863

3245

2894

1.423719

0.534213

0.390069

# Method New variable representing the effect of 1000 genes



Overall

Test data for result of oversampling LR

86

1027

22.09302

52.58033

540

#### Method

Dimension reduction of measure part:



#### Performance

- Logistic regression:
  - Partition the data 0.5:0.3:0.3 (training : validation: test)
  - Oversampling
  - Using selected variable (V238,V306,V33,V44,V95,gene\_score)
- Validating model performance

| Predictors                                   | Area under curve (AUC) |  |  |  |
|----------------------------------------------|------------------------|--|--|--|
| Only V238 (medical derived)                  | 0.791                  |  |  |  |
| All medical derived data (w/o gene score)    | 0.819                  |  |  |  |
| Both all medical derived data and gene score | 0.830                  |  |  |  |

# ROC of Both all medical derived data and gene score



#### conclusions

- Medical derived data play more important role in prediction. Also, genetic score can improve predicting results.
- We create a model for exacerbators with good predicting power (AUC = 0.83)
- Diseases are always related to genotype (single nucleotide polymorphism, SNP)

- Our model is:
- 1. A better predicting model for exacerbators (currently: physical exams ex: cough, sputum)
- 2. Need many measurements but easy to perform (gene screen is fast)
- 3. With biological and clinical meaning
- No more discussion on the relations between each variables
- Improvement: good predictors weighting





### Thank you!!