

Forecasting Perishable Food Sales Quantity for Efficient Inventory Distribution to Large Retail Stores

Team 7

112078503 Audrey Shen 112078513 Pearl Lin 111078510 Tim Lin 111078517 Frank Tsai

Summary:

The forecasting initiative, designed for perishable goods distribution across various stores, seeks to enhance inventory management efficiency and minimize excess inventory by predicting weekly sales quantities. Our stakeholders are the inventory managers of suppliers, allocate inventory to stores, and surplus items result in handling costs. Given the perishable nature of the goods, failure to predict sales quantities can lead to excess inventory and additional costs.

We acquired data from Nuqleous, a company specializing in precision retail planning, following their recommendation to aggregate daily data into weekly data for a four-week forecasting window for perishable goods. Focusing on the SKU with the highest sales quantity, 1394919, we utilize a roll-forward forecasting approach which can promote accuracy by updating the recent data. External variables like average price are also incorporated to improve accuracy. Using Building Number 514 as an example, we showed the time plots and boxplots which identify the ETS method as the best model, considering outlier reduction, overfitting prevention, and minimizing residuals.

Continuous updates and real-time data refinement are crucial for model accuracy. The forecasting models, designed for a four-week horizon, offer a proactive strategy for suppliers to optimize inventory allocation, mitigate excess inventory costs, and reduce perishable item wastage.

There are still limitations involving the need for regular data updates to enhance predictive precision. Despite challenges, the forecasting models present a promising step towards efficient inventory management and sustainability in the supply chain.

Forecasting Perishable Food Sales Quantity for Efficient Inventory Distribution to Large Retail Stores

Business Problem and Goal:

Our stakeholders in this forecasting initiative are the **inventory managers of suppliers**. Their responsibility involves allocating inventory to various stores, and any surplus items incur handling costs borne by the inventory managers of suppliers. Additionally, since the products are perishable goods with a short shelf life, failure to predict sales quantities in advance can lead to excess inventory, resulting in additional costs for handling and disposing of expired items.

Our primary objective is to **employ predictive analytics for weekly sales forecasts, enhancing the efficiency of inventory allocation**. We strive to strike a balance between meeting demand and preventing unnecessary spoilage, aligning with our commitment to sustainability and operational efficiency. This proactive approach aims to **minimize excess inventory, reduce costs related to product spoilage, and optimize the overall performance of the supply chain**.

Forecasting Goal:

Our primary objective is to forecast the sales quantities of our **top-selling SKU product**, **1394919** for each store. We define "top-selling" as identifying the product with **the highest sales quantity from 2021 to 2023**, across 15 stores. The decision to limit our focus to top-selling products, particularly the SKU 1394919, is intentional and serves as a minimum viable product (MVP) strategy. This approach allows us to establish the viability and effectiveness of our models in a controlled environment before considering their application to medium-selling items or expanding the scope of our analysis. According to the online meetings with Nuqleous meeting, we adopted their recommendation of setting warehouse stock levels for four weeks. Consequently, **our forecasting horizon will also be four weeks**.

We aim to **employ a roll-forward forecasting approach**, where part of the data is treated as newly acquired. The methodology for processing this data will be detailed in the data chapter. This approach allows us to carry out ongoing predictions and continuously refine our forecasts based on the latest information.

Data:

The raw data was provided by Nuqleous, who assists in precision retail planning through innovative solutions. The time period of the data spans from 2022/05/07 to 2023/04/20 with a total of 128,731 data rows. Our dataset includes a range of data columns, namely 'SKU Nbr', 'Building_Nbr', 'Purchase Channel', 'Date', 'Day of Week', 'Week and Year', 'This Year Sales (\$)', 'Last Year Sales (\$)', 'This Year Sales Qty', and 'Last Year Sales Qty'. Below are ten examples of data.

1	100.00	Rocking His	Purchase Thinkel	Ealer	Step of Maria	Work and Inc.	Dis Textistes (U	Last Year Sales IS	This Nur fairs (By	Last Your Lates 12ky
	122/018		townoa	2022-05-67	Salarday.	anizeth.	1.70	1.48	5	
- 8	104910	217	State Dalivary	2010-07-17	Samuralay	101211	1.0	6,63	0	1
- 1	12411	207	2-049	2022-25-07	Interda.	382219	18138	1540	£7	18
	1040.0	1.00	Non-Ning	1012-15-18	Sandag	1942-19	10.64	0.01		
. 1	1204010	317	Store Stewary	1012-15-08	Sanda)	062111	1.00	621		- 8
	10week	37	in house	2022/08/48	Surday .	382718	75.56	(12)		
- 4	104016	347	Stortlang	1012-05-40	the start of	362(1)	35.00	- 100	1.10	1.0
	1004816	1,807	Stre Delvery	1012-02-08	three .	38243	196	4.01	+	
	10455	201	111004-0	1112-15-18	Honde	351211	18104	0.01	81	1.0
. 18	139416	207	Rockbing	2022-05-08	Serie	00241	7874	488	-9	

Our business and forecasting goals require us to focus on columns which are Building Nbr, Week and Year, This Year Sales Qty, and This Year Sales (\$). Additionally, *SKU Nbr 1394919 has the highest sales* **quantity** during the period from 2022 week 15 to 2023 week 12, we selected this SKU Nbr to conduct our forecasting. Below is the sample time chart for each Building Nbr series of SKU Nbr 1394919.

In order to meet our forecasting goals, we did the following preprocessing. First, we utilized the "Last year sales" column to **extend the data's time span**, resulting in a timeframe from 2021 week 15 to 2023 week 12. This doubles the data for forecasting purposes. Let us have more data for training. Second, To align with the supplier's management needs, we **aggregated the daily data into weekly data**, as Nuqleous suggested that a 4-week forecasting window would be sufficient. Finally, we **imputed missing values and removed extreme values**, please refer to Appendix 1 and 2 to see details. The following is an example of a time chart of each Building Nbr series after data processing.

	March and March	Building Mar	Treat calco months	The state of the second second
	Week and tear	around the	then reas drawndy	N Verselve - N Minor & Wer Alle Aller
1	2021 W1E	307	100.0	- Harrison - Harrison - herrison and harrison and
2	2021 W16	307	345.0	A I AL
3	2021 W17	207	338.0	E dette a a Alad in the second of the second
4	2021 W18	207	332.0	- William Mar - 11 Rader - W. Mars Allow - ide R. Dar
. 5	2021 W19	207	553.0	
	05W 1526	207	572.8	A second and a state the Mr Arable
7	2021 W21	207	675.0	the removables of leavenment of a second sec
	2021 W22	307	630.0	the second se
	2021-W29	307	476.0	
10	2023 W24	201	507.0	WITH ALL - M Who we - M hyperson was
				he for the literation of the second s

Methods:

We will use the data from the **last eight weeks (2023 W5 to 2023 W12) as the validation period**, with the **training period spanning from week 15 of 2021 to week 4 of 2023**. We employed various forecasting methods, including NAIVE, Regression (TSLM), ARIMA, ETS, Neural Network, etc. Considering that price may influence sales quantity, we also include average price as an external variable in the model. Subsequently, we adopted a **roll-forward approach**, gradually incorporating data from 2023 W5 to 2023 W12 into the training period. To evaluate the performance, we also calculate the RMSE and residuals of each model.

We used time plots to preliminarily observe the prediction results of each method. We take Building Nbr 514 as a representative for an explanation. (The other 14 buildings will be put in appendix 3.)

Observing this chart, we found that the forecast results of the SNAIVE method deviate significantly from the actual values. Therefore, for Building Nbr 514, our first step would be to eliminate this forecasting method.

Next, we use boxplots to examine the residuals of each forecasting method. We follow the following steps to filter and choose the method. 1. Initially, we evaluate the performance on the validation set and **eliminate methods with a median significantly deviating from 0, excessive outliers, and large residuals**. 2. We compare the performance with the training period and **discard methods that exhibit overfitting** (perform well during the training period but poorly during the validation period). 3. We then **observe the total residuals** and choose the method with a smaller sum. Prioritizing the goal of minimizing inventory waste, we consider under-forecasting to be preferable over over-forecasting. 4. Additionally, since we aim to minimize error values, the RMSE metric imposes a substantial penalty for errors. Therefore, we use the RMSE metric as a supplementary criterion and **select the method**

with a smaller RMSE. 5. After four rounds of filtering if multiple methods remain, we opt for the simpler one (for example, choosing naive over ARIMA).

Taking the boxplot of Building Nbr 514 as an example: Initially, we retain the NAIVE, ETS, and ARIMA methods because they exhibit fewer outliers, and their medians do not significantly deviate from 0. After comparing these three methods with the training period, we observe no overfitting issues. Further comparison of the residuals for these three methods reveals that ETS has the smallest total sum (0.423). Therefore, we select ETS as the best model.

Finally, we forecast sales quantities for weeks 2023 W13 to 2023 W16 for each building using their respective best-fitted models.

Following this methodology, we chose the best model for each building and also used their respective best-fitted models to forecast sales quantities for weeks 2023 W13 to 2023 W16. The detailed results and methodology are included in the appendix for reference. (The regression equation is composed of trend and seasonality. The external variable is the average price of goods, and the lag1 is the lag of 1 week)

Excitizing_High	- 207	124	200	196
Rhithi	MANE	NVARIS 1,2810	NWAR2.12(20)	ring legt ETTR. bit technic - sciences - Chonest Jack 17
Balling, Nor	497	354	840	612
Model	100' ansatri)(2	ESSIAN	MOVE.	NAME
Balling, Rdd	840	79.1	1.890	875
Ahuasi	Milli4(0.1.2)	repeat T790Advect() = assect() = Acorago_priorit	MOVE.	ETHANN
Balling_Nor		879	1000	
Model	ing out [155.hthmail + seame - (inseape price)]	ARRAND.1.2)	Commence + Commenciel	

Conclusions:

Advantages: In the future, suppliers can leverage the sales forecasting models identified for each building to predict sales volumes for the upcoming four weeks. This forward-thinking approach aims to achieve better distribution of perishable goods, minimize food waste, and reduce associated costs related to inventory waste and spoilage.

The sales forecasting model, implemented using a roll-forward method, enables suppliers to continuously project sales volumes through regular monthly updates. Additionally, our system has the capability to generate forecasts for the sales quantity of top-selling products over the next four weeks for each store. These forecasts are then shared through detailed reports sent to each store. By strategically distributing stock across various stores based on these forecasts, inventory managers can optimize their inventory allocation strategies.

Limitations: The accuracy of our forecasting models relies on timely data updates. However,

following discussions with Nuqleous, it became evident that there is currently no established plan for regular data updates. Consequently, the absence of updated data poses a challenge in validating the accuracy of our predictions. While we have implemented a rigorous selection process for identifying the optimal forecasting models, the chosen models are still subject to ongoing refinement as additional real-time data becomes available. Continuous efforts are required to enhance the precision of our predictions.

As part of our strategic approach to adopting a Minimum Viable Product (MVP), we first chose to forecast inventory quantities for a single product. **Future research could delve into the exploration of whether applying a uniform decision logic to select models for all products yields more nuanced insights.** This consideration would allow for a more detailed examination of the applicability of our forecasting methodology across a broader product range.

Appendix

1. Missing Value

Addressing missing values is another step in our preprocessing. Given that the original data spans from 2022 week 15 to 2023 week 12, and we extend it to cover 2021 week 15 to 2023 week 12, there are gaps for 2022 week 13 and 2022 week 14. Additionally, values for the last two days (4/21, 4/22) of 2022 week 12 are missing. To rectify the missing values in week 12, we insert those by looking at the previous week (2022 week 11) to *calculate the percentage of weekly sales quantity* represented by the sales quantity on each of the last two days of the week. Then, the values for week 13 are replaced with the values of week 12, and week 14 are replaced with the values of week 15. (16 days of missing value are all being addressed)

2. Extreme value

After aggregating daily data into weekly data, there are extreme values in both 2022 week 10 and 2023 week 10. To address this, we replace the value of 2022 week 10 and 2023 week 10 by taking the *average of the values from their previous week and the following week*.

Fig1. Each building's weekly sales quantity

- 3. <u>Performance evaluation:</u>
 - 1) Building_Nbr: 207
- Time plots to observe the prediction results of each method

T _{el} mi	Histori	MAT .	ENSE.	MART
	ndinas	89.7	140	20.0
	ndinta esc	85.5	14	25.9
	anne.lug'	50.1	142	25.5
	1994 - C.	10.2	19.1	28.1
	naî we	106-	155	21.3
i turing	10	42.7	25/2	12.2
	100	24.4	178	2.1.6
	neg ørd	23.3	110	22
	(c), (e), (75.0	114	22.4
	14 B. 1997	1000	276.0	to a
	0.0154	12.7	209	5.54
	and show the	41.4	18.8	12.5
	arina bigi	SOUTH	176	15.8
	du i	14.5	15.6	428L-01
	1.000	1.2719-601	10.0	X149400
	14	2.04010	16T	0.007100
	10.5	438L/01	57	1,461,401
	organit.	4 215 401	(d 33)	1422-001
	reg Legit	THEFT	1021	2.007101
	310.00	140	152	44.1

Media	- Mai natitut
Arina	5.200
Arina Ala	103412
unna isat	2,05012
1÷.	A 216 - 2
naka.	251612
21	2.1x++0
a a g	1.1221-112
neg eva	.1410.10
n gulug 1	-256L-TV
14.000	$(1+2) \to \infty$

• Best model selection explanation

From the training boxplot, we found that 'naive,' 'ets,' and 'neural network' perform the best with relatively fewer outliers. However, analyzing the validation boxplot, it is observed that 'neural network' performs better during training compared to validation, indicating potential overfitting (deviation from 0 during validation). Further examination of RMSE and residuals reveals that 'ets' has a residual of -3.21e+3, while 'naive' has 2.51e+2. The training RMSE for 'ets' is 164, and for 'naive' is 155. In the validation set, 'ets' has an RMSE of 15.6, while 'naive' has 15.5. Considering the residuals being closer to 0 and positive (indicating no over forecast) for 'naive,' along with its slightly better RMSE performance in both training and validation, 'naive' is chosen as it aligns better with the business goal.

• Time plots to observe the prediction results of each method

Type	Model	MAE	RMSE	MARE
	atina	100	135	21.3
	arimatext	95.3	129	22.8
	arima lag1	97.1	130	23.3
	ets	105	145	24.5
Tosisian	nave	106	144	22.9
Training.	nn	43.7	57.0	9.52
	rog	70.5	103	17.6
	reglext	70.2	102	17.4
	rog lag1	71.9	102	17.9
	snaive	214	250	47.1
	arina	25.1	31.2	7.23
	arimatext	41.2	46.8	12.5
	anma lag1	47.5	63.5	14.5
	ets	27.1	37.1	7.55
Maladata	nave	25.6	34.9	7.21
varidation	nn	36.5	43.2	11.0
	rog	112	127	33.7
	reglext	103	117	30.6
	rog lag1	120	144	367
	snaive	182	216	55.7

Model	total residual
arima	2.18e1 2
arima.ext	4.49e+ 2
anma lag1	3 22c+ 2
ets	2.65e+ 0
nawe	1c+2
m	2.14e±0
rog	6 82H-13
reglext	5.69E 14
rog lag1	1 08F-12
snaive	5.46e+ 0

• Best selection explanation

Based on the boxplot, 'naive' and 'neural network (nn)' are retained as they exhibit fewer outliers. Analyzing residuals, 'neural network' has a value of -2.14e+0, while 'naive' has 1e+2. In terms of training RMSE, 'neural network' is 57.3, and 'naive' is 144. For the validation set, 'neural network' has an RMSE of 43.2, and 'naive' has 34.9. Choosing 'neural network' is preferred due to its residual being closer to 0, indicating better performance in capturing the underlying patterns in the data.

ly ex	Notel	MAL	I GARE	MALE.
	UNIT N	10 S	12	265
	un na ext	10) 10	125	25
	$= \max\{k, n\}$	1812	124	221.4
	62	X -1	1.6	100
la marca	18,055	102	192	23-2
	101	1012	91 1	10.1.
	240 M	71.1	10	X 07
	e gua sá	CL1	191	2015
	ang lagt	1010	••• • •	0.94
	e take	105	224	42.9
	2417.5	(11)	974	15-2
	ari na ski	1.11	51.4	44.4
	n make ji k	4,541,001	52.2	14
	1.00	41010	81 C	1.000-000
the shaded as a	nalee	<7.9	54.2	14.2
NUMBER OF STREET	101	30.1	27	3.34L (CC
	1.11	33-11	40.0	1200-00
	Negli esti	4610.04	967	117
	teg logi	1.01A-02	114	14.3
	The Rest of State	10.2	- 1 20	221.1

Noted	Mal_conduct
0.0104	4.75.9 2
CONTRACTOR	5.43c) 2
second by the	4.066 + 2
-873	40520.2
1.007	1.53(2) 2
	2.24 + 0
reg.	6 6 7 10
112 24	4,531-13
ang kapit	2.81E-18
ana iwa	261

• Best selection explanation

Based on the boxplot analysis, 'naive,' 'neural network (nn),' and 'reg.lag1' are retained as they exhibit fewer outliers and do not deviate significantly from 0. Analyzing residuals, 'naive' has a value of 2.89e+2, 'neural network' has 3.74e+0, and 'reg.lag1' has 2.84E-13. In terms of training RMSE, 'naive' is 143, 'neural network' is 66.4, and 'reg.lag1' is 96.1. For the validation set, 'naive' has an RMSE of 54.2, 'neural network' has 37, and 'reg.lag1' has 114.

Choosing 'neural network' is preferred due to its residual being closer to 0, and it exhibits less over forecasting compared to the other models.

• Time plots to observe the prediction results of each method

type	Model	MAH	RMSE	MAPH
	anma	82.5	124	Int
	anma ext	82.7	120	Int
	arima.lag1	82.6	121	Inf
	ets	82.5	124	Int
Lesina a	naive	109	174	Inf
i isaning	nn -	2.33	3.36	0.642
	reg	62.7	84.5	Inf
	reg ext	56.3	78.1	Int
	reg.lag1	58,4	80.9	Inf
	Shawe	139	179	38.4
	anma	24.1	28.8	6.85
	anma ext	36.6	42.1	10.2
	arima.lag1	0.28E+01	39.1	9.38
	ets	23.9	28.5	678++00
Validation	naive	2.09E+01	22.7	5.75
WARDEN AND	nn -	5 05E+01	66.6	13/1-+01
	reg	4.53E+01	52.4	1.29E+01
	reg ext	3.06++01	39.3	8.2
	reg.lag1	2.04E+01	33.8	7.08
	Shawe	39.9	45-3	11.4

Model	total_residual
anma	6 82E-13
anma ext	4 /811
arima.lag1	4.92E 11
ets	2 91e+ 0
naive	7e+ 1
nn	-3 286-1
reg	2.64E 14
reg ext	1 53E-13
reg.lag1	2.96E 10
Shawe	4 146+ 2

• Best selection explanation

Based on the boxplot analysis for 'regression,' 'reg.ext,' and 'reg.lag1,' 'reg.lag1' is selected. The residuals for 'regression' are -2.84E-14, 'reg.ext' is 4.78E-11, and 'reg.lag1' is 4.92E-11. For the validation RMSE, 'regression' is 52.4, 'reg.ext' is 39.3, and 'reg.lag1' is 33.8. Choosing 'reg.lag1' is preferred as 'regression' exhibits deviations from 0 during validation, and there is a more severe over forecasting issue. Therefore, 'reg.lag1' is chosen for its residuals being closer to 0.

• Total sales quantity prediction for weeks 2023 W13 to 2023 W16

Although in the validation period, our forecasts were based on models that were estimated/trained only on data that was available at the "time of prediction". But when it comes to forecasting the future after we selected the best model, "Average_price" is not available at the time of prediction (we don't have the future data of "Average_price"), therefore "Total sales quantity" of weeks 2023 W13 to 2023 W16 couldn't be predicted.

• Time plots to observe the prediction results of each method

Type	Model	MAE	RMSE	MAPE
	arima	89.9	118	49.2
	arima.ext	90.4	118	49.7
	anma lagi	90.2	118	497
	ets	90.4	135	59.3
Tosining	nawe	108	142	53.4
Training.	00	42	55.7	28.1
	rog	66.8	94.7	37.8
	reglext	66.9	91.7	37.9
	reg lag1	67	94.4	37.9
	snaive	164	225	112
	arima	64.3	81.1	21.6
	anma.ext	49.2	56.6	17.8
	enma.leg1	82	91.8	28.6
	ets	/6.2	84.6	27
	naive	61.9	75.9	23
VARIABION	nn	70.6	96.9	27.6
	reg	36.9	43.9	13
	reg.ext	35.1	42.3	12.6
	reg.lsg1	49.4	66.4	17.3
	snaive	104	113	39.6

Model	total residual
arima	8.57e+1
arimatext	4.38e+ 1
anma lag1	2 02c+ 1
ets	2.40e1 2
nawe	4.9 c+ 1
00	2.08e 1
rog	9.24F-14
reglext	2.42E 13
reg lag1	-3 69H-13
snaive	4.27e+ 3

• Best selection explanation

Based on the boxplot, 'reg,' 'reg.ext,' 'reg.lag1,' and 'nn,' 'reg' and 'reg.lag1' are selected. The residuals for 'reg' are 9.24E-14, 'reg.ext' is -2.42E-13, 'reg.lag1' is -3.69E-13, and 'nn' is 2.06e-1. Choosing 'reg' and 'reg.lag1' is preferred as 'nn' exhibits poor performance in validation, deviating from 0 or having a wide range of errors. Moreover, compared to 'reg.ext,' 'reg' is simpler.

• Time plots to observe the prediction results of each method

Type	Model	MAE	RMSE	MAPE
	arima	74.334091	98.046591	39.511525
	arimatext	73.691973	97.323042	09.080681
	anma lagi	73 246295	96 183157	38 954933
	ets	63.304046	110.076677	12.353966
Tosisian	nawe	87 817204	116 966855	41.711197
Training.	nn.	6.144375	7.636152	0.619631
	rog	54 117021	73 23/681	27.057006
	reglext	54.106405	73.237559	27.054284
	reg lag1	56 02979	71 510949	27 52972
	snaive	130.547619	166.707885	74.018951
	arima	41	46.7	23.3
	arimatext	31.4	37.6	10.1
	anma lagi	28.5	33.4	16.3
	ets	19.3	28.1	11.2
Malabalian	nawe	21	24.6	11.7
valuation	nn -	42.3	52.4	23.6
	rog	83.4	93.3	43.8
	reglext	82.9	92.7	13.6
	reg lag1	148	155	79.3
	snaive	144	150	78.3

Model	total residual
arima	8.07e+ 1
arimatext	9.67e+ 1
anma lag1	6 3/c+1
ets	1.50e1 2
nawe	1.356+2
00	1.51e) 0
rog	6 29E-13
reglext	2.84E 13
reg lag1	270-13
snaive	2.50e1 3

• Best selection explanation

We choose naive as the best model. It seems that the 'ets' boxplot appears favorable initially; however, it has a significant issue with over forecasting and includes outliers.

• Time plots to observe the prediction results of each method

Туре	Model	MAE	RMSE	MAPE
	atina	78.84856	95.97427	28.27119
	aina.ext	75.73366	95.51918	27.90720
	arma lag1	74 24162	98 73112	27 29919
	с, С	79.50863	99,79117	28,18943
Training	naive	78 95699	102 /8/23	28 11164
maning	m	61.35934	02.62775	25.0888
	ng	58 98049	80 11861	22.71294
	reglext	50.82249	80,10979	22,6901
	rog lag1	58 33794	79-75647	22 522299
	snaive	100.00952	189,99573	56.51
	arina	48.8	54.2	12.9
	arina.ext	45.8	53.5	12.7
	arma lag1	45.1	53.4	12.7
	ಕಲ	47	61.3	12.8
Matshation	nave	48.1	60.9	13.3
validation	nn	101	115	27.3
	ng	191	212	51.9
	reglext	194	215	52.7
	rog lag1	174	195	46.8
	snaive	101	202	49

Model	total residual
atina	1.40e1 2
arimatext	1.00e1 2
arma lag1	-2 44e+ 2
ets	2.23e1 2
nave	-2 1/e+ 2
nn	9.60e 1
rog	4 83E-13
reglext	0.53E 14
rog lag1	2 84H-14
snaive	5.41e+2

• Best selection explanation

Based on the boxplot, we selected 'naive' and 'ets.' Upon further observation of residuals, 'naive' has a residual of -2.17e+2, while 'ets' has -2.23e+2. Choosing 'naive' is preferred in this case.

• Time plots to observe the prediction results of each method

Type	Model	MAE	RMSE	MAPE
	arima	83.1	111	22.9
	arimatext	82.7	109	25.8
	anma lagi	832	109	26.2
	ets	84.8	114	25.7
Tosining	nawe	93.2	125	25.3
Training.		52.8	69.1	18.8
	rog	50	86.8	18.5
	reglext	56.6	03.2	17.8
	reg lag1	60.3	86.6	18.9
	snaive	154	200	40
	arima	23.8	34	10.1
	arimatext	41.9	52.0	15.5
	anma lagi	44.4	55.3	16.4
	ets	31.2	35.6	10.8
Maladata	nawe	39.2	46.1	13.6
valuation		57.7	69.1	20.4
	rog	47	69.5	16.1
	reglext	46.1	77.6	15.1
	reg lag1	60.1	72.9	20.8
	snaive	111	114	30.9

Model	total residual
arima	2.68e1 2
arima.ext	1.51e+2
anma lag1	9.99e+ 1
ets	1.67e+ 3
nawe	7.9 c+ 1
m	1.17e±0
rog	4 26E-13
reglext	7.67E 13
rog lag1	3 41H-13
snaive	3.62e1 3

• Best selection explanation

After observing the boxplot, we selected 'ets' and 'arima.' Upon further observation of residuals, 'ets' has a value of -1.67e+3, while 'arima' has 2.68e+2. Choosing 'arima' is preferred as its residual is positive, closer to zero, and the median in the boxplot is closer to 0.

• Time plots to observe the prediction results of each method

Туре	Model	MAE	RMSE	MAPE
	atina	81.57532	118.05767	Inf
	aina.ext	81.84385	115.07645	Inf
	arima lag1	78 55335	114 83048	Inf
	а С	80.67952	133.27101	Inf
Training	nave	92.35484	144 84016	Inf
manning	nn	34.12264	42.10687	10.87963
	ng	57 55349	83 86575	Inf
	reglext	52.471	00.45592	Inf
	rog lag1	53 92906	82 22312	Inf
	snaive	148,19048	108,16276	43,49090
	atina	67.5	76.2	27.5
	aina.ext	77	66.2	31.3
	arima lag1	53	65.5	72
	eta	22.1	31.9	9.44
Market and an	naivo	29	41.6	12.1
vareauen	nn	31.7	42	13.6
	ng	46	54.3	187
	reglext	33.1	39.9	12.6
	rog lag1	31.5	39.9	12.5
	snaive	93.9	102	37.6

Model	total residual
atima	1.64e+ 1
arimatext	1.02e+ 1
anma lag1	5 58c+ 0
ets	2.59e1 2
nave	-4.1 c+1
nn	3.95e 2
rog	4 83E-13
reglext	1.03E 10
rog lag1	2 84H-13
snaive	2.37e1 3

• Best selection explanation

Despite the seemingly good performance of 'ets' in the boxplot, it is observed that 'ets' has too many outliers in the training set, indicating insufficient training. Upon further observation of residuals, 'naive' has a value of -4.1e+1, while 'reg ext' is -1.03e-13. Choosing 'reg ext' is preferred due to its smaller residual and lack of outliers in the training set.

• Total sales quantity prediction for weeks 2023 W13 to 2023 W16

Although in the validation period, our forecasts were based on models that were estimated/trained only on data that was available at the "time of prediction". But when it comes to forecasting the future after we selected the best model, "Average_price" is not available at the time of prediction (we don't have the future data of "Average_price"), therefore "Total sales quantity" of weeks 2023 W13 to 2023 W16 couldn't be predicted.

Type	Model	MAE	RMSE	MAPE
	arima	79.5426	107.4004	35.81734
	arimatext	61.45409	109.11047	03.39247
	anma lagi	812568	108 18283	36.82465
	ets	62.69722	116.8771	45.44866
Tesining	nawe	97.60245	137 991	39.73193
Training.		41.26506	52,15833	13.54214
	rog	63 1499	87 74634	30 90248
	reglext	56,17560	80.96835	27.39532
	reg lag1	61.72501	87 08695	30.36887
	snaive	143.35714	185.87355	46.55024
	arima	66.3	87	52.4
	arimatext	66.5	89.5	55.0
	anma lagi	734	90.6	53
	ets	127	100	73.9
Maladation	nawe	66.6	81.7	37.3
validation		73.5	92.9	58.7
	rog	191	240	158
	reglext	123	169	104
	reg lag1	164	214	140
	snaive	198	247	182

Model	total residual
arima	3.15e1 2
arimatext	2.59e1 2
anma lag1	2776+2
ets	1.73e1 3
nawe	6.5 c+ 1
	3.77e+ 0
rog	7.115-13
reglext	2.56E 13
reg lag1	1 31E-12
snaive	0.87e1 2

• Best selection explanation

After observing the boxplot, 'arima' and 'arima ext' were selected. Further examination of residuals reveals that 'arima' has a value of 3.15e+2, while 'arima ext' is 2.59e+2. Choosing 'arima ext' is preferred due to its smaller residual.

• Total sales quantity prediction for weeks 2023 W13 to 2023 W16

Although in the validation period, our forecasts were based on models that were estimated/trained only on data that was available at the "time of prediction". But when it comes to forecasting the future after we selected the best model, "Average_price" is not available at the time of prediction (we don't have the future data of "Average_price"), therefore "Total sales quantity" of weeks 2023 W13 to 2023 W16 couldn't be predicted.

type	Model	MAH	RMSE	MAPH
	anma	45 67239	62 90562	138 4601
	anma ext	43 44927	57 11663	175 5502
	arima.lag1	43,85609	57.685	179.9311
	ets	45 43564	62 86446	140 1002
Internet	naive	46,16129	63.24292	138.8476
rising	nn	42.02555	67 65349	349 0978
	reg	38.8156	53.65997	193.6767
	reg ext	33 98471	50 43254	1/8//287
	reg.lag1	34.3741	49.96492	170.873
	snawe	93 35714	126 9594	971 131
	anma	30.8	33.8	15.1
	anma ext	273	32.1	13.8
	arima.lag1	28.2	33.3	14.4
	cts	30.1	32.9	14.8
Validation	naive	30.8	33.8	15.1
9940.6400.00	nn	30.6	34.4	15.4
	reg	72.6	75.8	38
	reg ext	130	139	63.8
	reg.lag1	125	104	61.3
	snawe	115	125	567

Model	total_residual
anma	1 /2c+ 1
anma ext	5 986+ 1
arima.lag1	8.08e1 0
cts	1 88c+ 1
naive	1.7 et 1
nn	-4 00c- 1
reg	5.60E 14
reg ext	5 83-13
reg.lag1	1.99E 10
snawe	-2 39c+ 3

• Best selection explanation

After observing the boxplot, we selected 'naive,' 'ets,' and 'arima.' Upon further examination of residuals, 'naive' has a value of 1.7e+1, 'ets' has 1.88e+1, and 'arima' has 1.72e+1. Choosing 'naive' is preferred based on its smaller residual.

• Time plots to observe the prediction results of each method

type	Model	MAH	RMSE	MAPH
	anma	43	56.5	Int
	anma ext	412	54.9	Int
	arima.lag1	41.8	58.6	Inf
	ets	44 3	61	Int
Incident	naive	47.7	65.0	ht
	nn -	11	14.2	14.2
	reg	31.1	42.1	ht
	reg ext	28.9	39.8	Int
	reg.lag1	30.6	41.9	ht
	snawe	103	130	117
	anma	13.8	15.4	15-4
	anma ext	14	15.8	15-6
	arima.lag1	14.1	16.9	18.8
	ets	13.5	14	15-4
Validation	naive	17.2	10.4	19.7
	nn -	26.1	34.7	307
	reg	59	77.8	67.9
	reg ext	178	97.1	88.9
	reg.lag1	63.4	80.2	73.1
	SBBWC	621.8	78.2	80.5

Model	total_residual
anma	3 30c+ 1
anma ext	-35fe+1
arima.lag1	1.57e+ 2
ets	5 07e+ 1
naive	Se+ 0
nn	-9.706-1
reg	4.65E 13
reg ext	-1.26E-13
reg.lag1	3.02E 13
snawe	-3 96e+ 3

• Best selection explanation

We choose ets as the best model through the boxplot.

• Time plots to observe the prediction results of each method

Type	Model	MAE	RMSE	MAPE
	arima	122	167	21.9
	arima.ext	116	160	23
	anma lag1	116	196	22.9
	ets	123	169	21.9
Tosining	nawe	130	175	22.8
Training.	00	63.8	80.1	11.9
	rog	83.3	124	187
	reglext	82.2	120	18.7
	reg lag1	82.2	119	187
	snaive	293	348	50.8
	arima	42.4	40.7	0.01
	arimatext	37.9	19.0	8.08
	anma lag1	572	73.6	12.2
	ets	44	51.1	9.18
Maladara	nawe	36.6	45.2	7.62
valuation	00	61.3	75.0	13.1
	rog	134	162	29
	reglext	170	204	38.8
	reg lag1	779	299	49.1
	snaive	337	359	71.7

Model	total residual
arima	3.49e1 2
arimatext	7.33e1 2
anma lag1	3 61e+ 2
ets	3.99e1 2
nawe	236+2
	7.46e 2
rog	5-68E-14
reglext	1.42E 12
reg lag1	-2 84E-13
snaive	9.64e1 3

• Best selection explanation

From the boxplot, it is evident that 'ets' and 'arima' perform the best. Upon further observation of residuals, 'ets' has a value of 3.99e+2, while 'arima' has a slightly lower value of 3.49e+2. Therefore, 'arima' is selected.

Туре	Model	MAE	RMSE	MAPE
	atina	105	138	25.2
	aina.ext	103	137	25.4
	arima lag1	104	137	26
	ets	109	144	23.5
Training	nave	111	151	232
institute.	nn	60.7	75.1	14.2
	nog	65.3	91.8	17
	reglext	65.0	91.6	17
	rog lag1	67.4	89.3	17
	snaive	155	215	35
	atima	02.0	94.5	22.4
	aina.ext	79.1	69.4	20.8
	arima lag1	80.2	90.1	21.4
	ets	77.3	92.6	19
Matshation	nave	81.6	106	20.3
varioauch	nn	80.7	64.5	17
	nog	57.8	80.9	172
	reglext	57.8	65.5	17.2
	rog lag1	83.2	112	23.4
	snaive	98.1	124	26.6

Model	total residual
arima	3.38e1 2
arimatext	3.91e+ 2
arma lag1	2 88c+ 2
ets	3.07e+ 2
nawe	1 91c+ 2
nn	9.90e 2
rog	5 97F-13
reglext	0.41E 13
rog lag1	-5 68H-13
snaive	3.85e1 0

• Best selection explanation

Boxplot analysis reveals that 'regression' and 'regression external' perform the best. Observing the residuals, 'regression'' has a value of 5.97e-13, while 'regression external' has -3.41e-13. We select 'reg' due to its positive residual sum and simpler model structure.

